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Abstract: Large structures and high-value assets require inspection and integrity assessment
methodologies that ensure maximum availability and operational capabilities. Large membranes are
used as floating covers at the anaerobic wastewater lagoons of Melbourne Water’s Western Treatment
Plant (WTP). A critical function of this high-value asset pertains to the harnessing of the biogas gas
generated at these lagoons as well as protecting the environment from the release of odours and
greenhouse gases. Therefore, a proactive inspection and efficient management strategy are required to
ensure these expensive covers’ integrity and continued operation. Not only is identifying the state of
stress on the floating cover crucial for its structural integrity assessment, but the development of rapid
and non-contact inspections will significantly assist in determining the “real-life” performance of the
cover for superior maintenance management. This study investigates a strain determination method
for WTP floating cover which integrates unmanned aerial vehicle (UAV)-assisted photogrammetry
with finite element analyses to determine the structural integrity of these covers. Collective aerial
images were compiled to form 3D digital models of the deformed cover specimens, which were
then employed in computational and statistical analyses to assess and predict the strain of the cover.
The findings complement the future implementation of UAV-assisted aerial photogrammetry for
structural health assessment of the large floating covers.

Keywords: structural health monitoring; unmanned aerial vehicle; photogrammetry; 3D scanning;
membrane; strain determination

1. Introduction

Membrane covers are commonly used as floating covers for clean water reservoirs to prevent
evaporation and pollution; for landfills to trap hazardous chemicals and unpleasant odour;
and for tailing impoundment [1-3]. Floating cover materials such as high-density polyethylene
(HDPE) geomembranes are very durable, resistant to many different solvents, and have a high
strength-to-density ratio, and if well-designed, long service life (in decades) even in harsh
environments [2,3]. The Western Treatment Plant (WTP) at Werribee, Victoria, Australia, installed
two floating covers to assist with the anaerobic treatment of the raw sewage beneath them, leading
to the production of methane-rich biogas, see Figure 1. The WTP floating covers are made from a 2
mm thick HDPE spanning an area of 450 m by 170 m. The WTP cover is held around its perimeter by
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clamping strips and mechanical fasteners to provide an airtight seal. In addition to controlling odour,
these covers are capable of collecting up to 65,000 m® of biogas per day that can generate up to 7 MW of
electricity, thereby increasing the treatment plant’s supply of renewable electricity from this sustainable
source. Without this cover, the methane-rich biogas would be released into the environment as a
damaging greenhouse gas. All sewage inflow is unscreened and passes first through an anaerobic
reactor where biogas is produced as the raw sewage undergoes anaerobic digestion, which is trapped
below the floating cover and harvested for electricity generation. Solidified sewage substance can
amass on the reactor surface to form a scum-berg which presses against and elevates the covers to a
height of approximately 1 metre. The scum-berg can cause lateral displacement, thus causing changes
to the stress on the cover, which is partially due to hydrodynamic effects resulting from the sewage
inflow. The movement of sewages and the presence of methane-rich biogas require that the proposed
inspection methodology is intrinsically safe and, therefore, underpins the requirement of a proactive
and effective inspection approach that ensures the integrity and continued operation of this asset.
However, for a structure of this size, the definition of its state of stress is currently beyond the capability
of current measurement techniques and, hence, requires a more robust approach.

170 m

450 m

Figure 1. Floating high-density polyethylene (HDPE) membrane cover at the Western Treatment Plant
(WTP) anaerobic wastewater lagoons in Melbourne, Australia.

Over the past decades, the acquisition of full-field strain measurement has been an active field for
structural health monitoring (SHM). The well-established non-contact strain measurements, such as
digital image correlation (DIC), have been extensively investigated and have achieved a high degree
of accuracy, primarily for in-plane strain measurement for various applications. However, in using
the DIC method at large deformation, the uncertainty in strain measurements increases significantly
as the speckle pattern degrades, and decorrelation occurs at such high strain levels [4-8]. A more
precise full-field strain determination could be achieved by a 3D DIC method for non-planar specimens
with out-of-plane displacement and rotation using two synchronised cameras, and recently, one single
camera [9-12]. However, this method is often limited by the fixed and small depth of field and highly
controlled testing environment [9,13]. Nevertheless, it is known that the ability to accurately predict
the strain field from 3D deformation is significantly challenging, especially for large structures in
its operating environment. Recently, photogrammetry has become one of the commonly available
non-contact and full-field measurement methods for SHM [14,15]. This method, with the aid of
photogrammetric software, constructs a digital elevation model (DEM) from sequential 2D digital
photographs. Bagersad et al. [16-19] integrated photogrammetry to predict the 3D dynamic strain
experienced by the blade of a wind-turbine using finite element analysis. Pappa et al. [20] used optical
techniques with reflective markers and projected dots to define the dynamic motion of membranes.
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Recently, Luo et al. [21] have investigated the concept of using photogrammetry to measure strain
fields of deformed large inflatable structures by combining Delaunay triangulation and finite element
methods. However, quantitative evaluations, such as strain and stress measurements, based on
photogrammetry are still in their infancy, where many previous studies relied on the monitoring of
surface fiducial markers, primarily focused on shape measurement of structural surfaces [21-27].

Unmanned aerial vehicle (UAV) is a generic uninhabited aerial vehicle that is remotely controlled
either manually or autonomously. The ability to install non-contact measurement capabilities on
unmanned aerial vehicles (UAV) is creating more rapid and safer opportunities in SHM of large
structures such as aircraft wings, dams, vertical tanks, and elevated highways. Recently, there has
been significant interest in using UAV systems coupled with photogrammetry to rapidly acquire high
temporal and spatial resolution image information for 3D modelling and various disciplines [28-33].
This UAV photogrammetry system provides a low-cost commercially available or customisable
practical alternative in the close-range aerial domain. This system can be deployed in high risk and
inaccessible areas, where it is considered too difficult or impossible for traditional methods and without
endangering human life or safety [29]. Furthermore, this would lead to a more time-efficient inspection
process for large areas which include monitoring archaeological sites, environmental and agricultural
areas, and traffic [29,31]. Despite the advantages in UAV photogrammetry, it is limited by its relatively
short flight time and long computational processing due to a significantly large dataset.

In this collaborative project, a single camera mounted on a UAV-based photogrammetry system
is deployed as a wide coverage non-contact measurement diagnostic tool to monitor the state of
deformation of the WTP membrane covers. The research project proposed to build upon the practical
diagnostic tool towards an innovative smarter structure and maintenance, reflecting the digital twin
paradigm [34]. One of the research project objectives is to devise a two-stage global-local monitoring
strategy where UAV photogrammetry monitoring is first deployed to rapidly evaluate the global strain
response of the cover, thereby identifying critical areas where, subsequentially, a localised-detailed
inspection is conducted for further quantitative assessment. This two-stage strategy aims to significantly
reduce time and cost for inspection of the entire cover and mitigates workers’ exposure to a high-risk
environment. With the current digital deformation and fiducial features on the WIP membrane
cover, it is highly advantageous to acquire the strain field of the membrane for a more meaningful
measurement of the asset. However, the floating covers DEMs are highly subjected to artefacts from
debris, lighting, and weather. Nevertheless, strain fields are extremely difficult to obtain from small
measurements difference and as it is derived from displacement information, it requires highly accurate
displacement readings [26]. Thus, the raw DEM requires significant preprocessing prior to further
analysis. Furthermore, the WTP regulations, such as flight restriction (minimum and maximum height
and duration) and the fact that coating or physical attachment on the cover are not feasible options,
limit the ability to enhance the accuracy of acquired measurements through other means, making this
problem-specific application significantly challenging.

Our previous works have shown the application of UAV photogrammetry systems into finite
element (FE) analysis for strain determination and, furthermore, on-the-field work on the optimisation
of flight parameters, which includes overlapping of photos, flight path, and altitude [28,35-37]. In this
paper, experimental studies are conducted where UAV photogrammetry is deployed to construct the
DEMs of two deformed membrane specimens in a controlled laboratory setting, as a continuation of
our investigations on reliable SHM of the WTP floating covers. The DEMs are then preprocessed using
a smoothing interpolation with different smoothing parameters and applied as displacement loads
for FE analysis to predict its displacement and strain field (see schematic in Figure 2). As uncertainty
and erroneous measurements inevitably arise from all stages of the procedure (data collection and
preprocessing of data), a probabilistic approach is considered to provide a statistical prediction of the
strain field and its degree of certainty. Hence, the resulting smoothed strain fields are then utilised
as training data for a variational inference method approach for heteroscedastic modelling, based
on Gaussian process (GP) regression. The findings give insights into the development of a strain
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monitoring strategy tailored for WTP floating covers and in aiding the decision support for WTP
floating cover management.

Data Acquisition Preprocessing of Data
wvia UAV-photogrammetry

1 Apply Smoothing
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Figure 2. Schematic depiction of the procedure used for strain determination in using a UAV-assisted
photogrammetry DEM for deformed membrane covers.

2. Method

2.1. UAV Photogrammetry Setup and DEM

An unmanned aerial vehicle DJI Spark with an integrated camera was deployed for all the
laboratory studies. The 3D DEMs of the membrane are developed by sequential 2D images from
the mounted digital camera with pre-determined flight paths. The specification provided by the
manufacturer is listed in Table 1.

Metashape Professional by Agisoft [38] was used to perform image alignment, construction of
dense clouds, mesh, and DEM Agisoft adopted the computer vision algorithms (i.e. Structure from
Motion ‘SfM’ and bundle adjustment), described in Barazzetti [39], Westoby [40], and Triggs [41],
to develop an autonomous adjustment, realignment of multi-images, and reconstruction of a 3D model
with high redundancy. Dominic [42] also reviewed the basic principles of the modern photogrammetric
and procedures of conducting a photogrammetry approach. All the captured images were loaded with
their corresponding metadata (e.g., GPS location and camera setting) to Metashape Professional for
generating the DEM. All parameters (including alignment, dense cloud, and mesh generation) were
set to the highest available setting to construct accurate DEMs.

Table 1. Specification of DJI—Spark from the manufacturer [43].

Description Details
UAV model DJI-Spark
Weight (battery and propellers included) 300g
Camera Sensor 1/2.3” CMOS
Effective Pixels 12 MP (3968 x 2976)

FOV 81.9° 25 mm
(35 mm format equivalent) f/2.6
Satellite Positioning Systems GPS/GLONASS
Maximum Flight time 15 min

Lens
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2.2. Noise Filtering of DEM

All DEMs contain random errors and artefacts and their accuracy depends on the topography,
DEM generation method, and resolution [44—47]. Maps and models derived from raw noisy DEM are
usually readable after some filtering postprocessing of data to filter noise and improve the data quality.
It is important to obtain a high-quality DEM with minimal noise in order to accurately obtain the strain
field. Common techniques such as attenuating high-frequency noise in DEM can be performed by
spatial filtering based (low-pass filter) on a 2D Fourier transform [44]. Other techniques such as 2D
discrete wavelet transform, cutting methods, and smoothing can be found in previous literature [46,48].
The DEM smoothing technique, which includes moving average smoothing, median smoothing, etc.,
is one of the most popular approaches for DEM denoising and widely used in DEM-based geology
studies [45,49]. One example is the moving average method, which smooths data, where the size
of a moving window and the number of smoothing iterations are manually selected. However,
this approach has been used with caution as it may produce undesirable high-frequency artefacts.
A median smoothing filter, which performs through the signal entry by entry, replacing each entry
with the median of the neighbour entry, is also a well-known nonlinear noise filtering process to filter
impulsive-like (speckle) noise. However, an additional scheme is required when processing entries at
or near the boundary. Cubic smoothing splines interpolation is an alternative approach that embodies
a surface fitting technique to create a smooth model of a complex profile while removing noisy data
and avoiding Runge’s phenomenon. In this study, the cubic smoothing splines technique is used to
preprocess the raw photogrammetry DEM.

In general, the fitted curve spanning each data interval is presented by a cubic polynomial with the
endpoints of the adjacent polynomials matching in location and the first and second derivative [50-52].
In its basic form, the objective is to minimise the square error and the curvature; refer to Equation (1)
for the 2-dimensional cubic smoothing splines form.

R - 2 PEV [ PV (Y
mlan;‘ —F(l—p)Xf{(ﬁ) +2(m) +(a—yz) dx dy 1)

where x;, y;, and z; are the data coordinates and f(x, y) are cubic polynomials, and the weighting
parameter p balances the two countervailing constraints and results in a smoothing cubic spline.
Succinctly, if p = 1, the smoothing spline passes through all data points resulting in an interpolation

Zi — f(Xi, Y1)

spline, and if p = 0, only the curvature of the spline is minimised and hence results in a linear
least-squares fit. It should be noted that there are other modified versions of the cubic spline smoothing
which include piecewise constant weight function in the curvature measurement and error measure
weights. However, for simplicity, only the basic form where p is constant for all directions is considered
in this current work.

2.3. Material and Experimental Setups

In this study, HDPE materials from Melbourne Water’s supply were used. A preliminary
investigation of a static pull test using static INSTRON 33R 424 was conducted on six HDPE specimens
to validate the material properties, Young’s modulus of 125 MPa, Poisson’s ratio of 0.42 and stress
and strain curve. Two HDPE materials of 2 mm thickness with different geometry sizes were used
for two experimental investigations to represent two common deformations of the membrane cover:
out-of-plane (OOP) deformation and in-plane deformation (wrinkle formation). The surface of each
test specimen is marked with an internal grid with the discretisation of 20 mm to represent the target
features. The test specimens are mounted on a test frame rig, refer to Figure 3a, and reference points
are marked on the frame to align the DEMs to a 3D coordinate system. Rectangular wood blocks
sandwich the edge of the specimens and are then secured using multiple screws and clamps to provide
the uniform constraints on the edges for the two tests. For each photogrammetry analysis, 18 aerial
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images were taken approximately 2 m above the membrane specimen with more than 90% overlapping
(see Figure 3b).

i HDPE membrane specimen
(a) (b)

Figure 3. (a) Membrane deformation test apparatus. (b) Dense clouds of the membrane specimen via
aerial images.

In the OOP deformation test, a 1200 mm squared HDPE with an internal 1000 mm squared grid
marked on the surface is used, as shown in Figure 4. The membrane cover is mounted on a partially
fixed frame, allowing in-plane deformation, and dominantly displaced in the OOP direction by a
hydraulic car jack located approximately at the centre of the membrane. The membrane is loaded six
times, at first incrementally to a height of 23 mm, 48 mm, and 72 mm, then released to 63 mm and
51 mm, and a final loading to a height of 86 mm, which formed the six OOP deformation tests denoted
as Step 1 to 6, respectively, for this study. Optical fibres were installed and aligned with the vertical
lines of 1000 mm at 800 mm and 1000 mm horizontally on the HDPE specimen for benchmarking the
strains; refer to Figure 4.

OOP Displacement . __

800mm  1000mm
(@) (b)
Figure 4. (a) 3D DEM of the OOP deformed membrane specimen; and (b) labelled constraints,
OOP displacement load, and location of the optical fibre recordings along vertical lines on the grid.

In the in-plane deformation test, a 1200 mm by 500 mm rectangular HDPE with an internal
1000 mm by 300 mm grid is used, as shown in Figure 5. The membrane cover is fixed on one end
while the other end is translated in the in-plane direction towards the fixed edge by 112 mm, 161 mm,
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and 267 mm. These imposed displacements caused the membrane to form a wrinkle/fold denoted
as Step 1 to 3, respectively. The maximum fold heights are 190 mm, 223 mm, and 280 mm for each
subsequent step test. Optical fibres were installed and aligned with the horizontal line of 1000 mm at
180 mm and 320 mm (80 mm and 220 mm horizontal grid lines) vertically on the HDPE specimen for
benchmarking; refer to Figure 5.

In-plane displacement

Fixed

Fixed

320mm 180mm

@ (b)

Figure 5. (a) 3D DEM of the in-plane deformed membrane specimen; and (b) labelled constraints,
in-plane displacement load and location of the optical fibre recordings along horizontal lines on the grid.

The preprocessing of experimental data is performed using MATLAB. The photogrammetry DEM
is transformed into a readable format, and then the fiducial grid is extracted from each test. A contrast
threshold technique is used to identify and extract the grid, and a stationary reference outside of the
membrane is used to align the DEM to a global coordinate system. The coordinates and elevation
of the grid lines from its corresponding DEM and for each loading case are then extracted in-aid of
MATLAB's inbuilt computer vision tool detectSURFFeatures.

The cubic smoothing spline is then employed to smooth the model and filter noise due to artefacts,
such as light reflection and dirt on the membrane, as a function of weighting parameter, p, from 107! to
107, Afterwards, the preprocessed displacement fields are used as the displacement grid to load the
FE membrane model. In this work, the DEM OOP deformation field is fully applied as the grid load
and the in-plane deformation fields are only applied on the top and bottom boundaries of the grid for
the OOP deformation test and applied on the left boundary of the grid for the in-plane deformation
test while the remaining are excluded and set to freely deform in the in-plane directions and to ensure
convergence of the solution.

ANSYS 19.2 is used as the FE computational analysis tool to simulate the deformation of the HDPE
membrane using the processed DEM displacement field as displacement load conditions. A shell
membrane element was used to model the membrane cover of mesh discretisation of 5 mm. Given
the quasi-static nature of the membrane, ANSYS Static Structural analysis is considered. ANSYS
Parametric Design Language scripts were developed to assign and displace each node on the grid. For
nonlinear FE analysis, Large Deflection is set ON and in the experimental investigations, ANSYS Solver
Controls Weak Springs is set to Program Controlled to restrain rigid body motion. The simulated
smoothed and raw models’ strain fields are compared to the strain reading from optical fibre for each
deformation test and step.

2.4. Statistical Process Approach: Gaussian Process

Significant smoothing of the data or model inevitably results in undesirable amplitude reduction.
Photogrammetry data and images are subjected to noise and processed data after smoothing interferes
with the precise measurement of the elevation/height causing erroneous strain prediction, especially in
areas with high displacement gradients. Nevertheless, unavoidable uncertainties exist throughout
the stages from acquisition of data to output of results, therefore, the deterministic prediction of
strain values is difficult, and hence, this motivates a probabilistic approach to tackle these inevitable
variations. Given the practical application in hand, the only information obtained are the raw data and
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smoothed models with different weighting parameters constructed from the photogrammetry DEM,
and the true strain measurements remain unknown. A statistical process approach using sample data
of the smoothed and raw strain field is employed to provide a probabilistic prediction in evaluating
the likelihood of strain values of the structure.

2.4.1. Gaussian Process Regression

In this study, GP regression is demonstrated as a probabilistic prediction approach for strain
determination. GP, which assumes that the joint probability distribution of model outputs is Gaussian,
is a Bayesian approach used in applications for model approximation, multivariate regression,
forecasting, and experiment design and as an algorithm for regression and classification for machine
learning [53-55]. The fundamentals of GP regression are briefly introduced, and a more comprehensive
report can be found in previous literature [53-56].

GP is a stochastic process in which any finite subset through its domain follows a multivariate
normal distribution [56]. Consider the following nonlinear regression model with homoscedastic noise
(constant variance) of observed data D = {(x1,¥1),..., (Xn, yn)},

vi=f(xi) +e )

where ¢; ~ N (0, ag) represents the measurement error, which is independent and identically distributed
normal random noises with zero mean and variance 02, and f(x) is an unknown function.
The GP regression model can then be denoted as

f(x) ~ GP(u(x), k(x,x"; 0)|x) €)

by the GP method, f(x) is related as a random function and assumed to have a GP prior with a mean,
(x), and covariance k(x, x*; 0) = E[(f(x) —x)(f(x*) — x*)], where 6 denotes the set of hyperparameters.
Hence, the joint distribution of the yy, ..., y, is multivariate normal.

=l " ~ N Y) @
where y has entries 11; = p(x;) and ¥ is a n by n matrix whose (i, /)™ element is given by
Y= Cov(yi, yj) = k(xl-, Xj; 9) + ogéij ®)

where 6;; is Kronecker delta.
For a new input x* and y*, the corresponding response value is calculated as

E(f(x")

D) = p(x") + 9" (x) ¥ (y - p)

Var(f(x'ID) = k(x',';0) - T (x') ¥ (y - p)p(x") )
where (x*) = [k(x*,x1;0), ..., k(x*,x,;0)]" .
Therefore,
7" = E(y'|D) = E(f(x")|D) )

62 = Var(y*|D) = Var(f(x*)|D) + o?

Therefore, the lower and upper limits are, respectively,

7"~ 76" and 1" + Z6™ )
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A simple assumption is that the correlation between two points decays with the distance between
the points according to an exponential function. One prevalent choice of a kernel fulfilling this
assumption is the squared-exponential kernel function.

(- (x=x")2

kse(x,x*|0) = 6%\~ 2 ) )
where |x — x*| is the Euclidean distance between two input points and 6 denotes the collection of
hyperparameters associated with the kernel function, in this case & and I. 2 is the signal deviation
and [ is the characteristic length scale, which defines how far apart the input values of x can be for the
response values to become uncorrelated. The hyperparameters are usually not assumed to be known
but are trained by maximising the marginal log-likelihood from the dataset [54,55],

1 _ 1 n
logP(y|D,0) = —E(y ) ¥ Ny —p) - 5 log [¥| - 5 log 27 (10)

2.4.2. Heteroscedastic Gaussian Process Regression

It is highly desirable to fit a regression model with non-constant variance than the standard GP,
where a constant variance is assumed, which is often unrealistic in many applications. There have been
developments in novel GP approaches to regression with input-dependent noise rates and demonstrated
higher accurate modelling of real-world datasets compared to other regression methods [57-61].
In this study, variational heteroscedastic GP (VHGP) regression is considered and a brief explanation
of the theory will be shown in this section. More detail can be found in the work by Gredilla and
Titsias [58].

Similar to the Equation (2), instead of the GP prior on f(x) and the error term, we have

~ GP *
f(x) ~ GP(0, kg (x,x%; 0)lx) 11)
& ~N(0,r(x;))
where 7(x) is an unknown function and the function is defined as r(x) = e®*) to ensure positivity and
without losing generality, and

g(x) ~ GP(uo, kg(x, x'; Gg)‘x) (12)

Once the kernel functions are defined, heteroscedastic GP is fully specified and depends only on
its hyperparameters (0, 04 and o). Unfortunately, the exact inference in the heteroscedastic GPs is no
longer analytically tractable and, thus, a marginalised variational approximation bound [58] for the
likelihood function is given by

F(p,Z) = logN(y|0,K;+ R) - jztr(z) — KL(N(g|u, Z)IN(8|uo1, Kg) (13)

where R is a diagonal matrix with elements R;; = e*i~%i/2, and KL is Kullback-Leibler divergence.
Furthermore, the stationary equations

FpE) 0T

must be satisfied at any local or global maximum and the two equations are obtained as follows,

1
p= Kg(A - 51)1 +uol, T =K'+ A (15)
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for some positive semidefinite diagonal matrix A. g and £ are expressed as a function of A. So, the
marginalised variational bound can be a function of A,

which needs to be maximised with respect to the # variational parameters in X. By implementing
the marginal log likelihood for model selection, we can maximise F with respect to the model
hyperparameters for a new test point.

This study employs the VHGP regression method for data modelling to deal with the different
sources of uncertainty that originated from photogrammetry, preprocessing, and postprocessing
analyses. The objective of using an inference statistical approach is to provide descriptive insight and
prediction to the strain field. In this work, automatic relevance determination squared-exponential
kernel function is defined as

o2

n Xy — X

karpse (x,x710) = 6% exp [Zml ——( mzl m) ) (16)
- m

and employed for f(x) and g(x). All strain results for all p-values were used as the training data set
and the predicted VHGP models are compared to the experimental optical fibre strain data.

3. Results

3.1. Out-of-Plane Deformation Test

Figure 6 shows OOP deformation test Step 6 strain fields and their relative residual displacement
compared to the raw data (no smoothing). The preprocessing smoothing technique on the DEM
significantly improved and denoised its strain profile and uncovered its relevant features which
improve the accuracy in identifying the location of the maximum strain, thus providing qualitative
information on the evolution of the strain field. However, it is shown that overly smoothed profiles
result in flattening of peaks, loss of localised and fine-detailed strain and displacement information.

Strain profile
Raw data p:lﬂ-g p:lﬂ-4

EokEks

Residual (OOP displacement) relative raw data

15
1
0 )

Figure 6. OOP deformation test: Equivalent strain (von-Mises) of raw data and different cubic

Equivalent strain
(von-Mises)

Displacement (mm)

)

smoothing spline parameters and its residual out-of-plane displacement relative to raw data (no filter).

Figures 7-12 show the strain distributions along the vertical line at 800 mm horizontally for the
tests with and without the filtering process and those recorded by the optical fibre (measured strain).
There are significant improvements in the strain profile when p is smaller than 1073 in comparison
with the measured strain and the location of predicted maximum strain is within 8.8 mm of the
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location of the measured maximum strain value. The strain profile gradually improves as p decreases,
however, the maximum strain value decreases for all tests. An average maximum strain reduction of
51.3%, 57.0%, 63.0%, and 79.2% was observed for p values 1073 to 107, respectively, relative to the
measured strain.

(-':1)1 %104 (b) ; x10°

Optical Fibre
. 0.5 — — —Raw Data
= = — & _|:|:1(.‘|'-I
& g 2
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\ertical displacement (mm) Vertical displacement (mm)

Figure 7. OOP deformation test Step 1: Strain along the vertical line (a) at 800 mm and (b) at 1000 mm
for different p parameters, no filter, and optical fibre.
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Figure 8. OOP deformation test Step 2: Strain along the vertical line (a) at 800 mm and (b) at 1000 mm
for different p parameters, no filter, and optical fibre.
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Figure 9. OOP deformation test Step 3: Strain along the vertical line (a) at 800 mm and (b) at 1000 mm
for different p parameters, no filter, and optical fibre.
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Figure 10. OOP deformation test Step 4: Strain along the vertical line (a) at 800 mm and (b) at 1000 mm
for different p parameters, no filter, and optical fibre.

(a),I x10* (b) | x10t

Optical Fibre

— — —Raw Data

—p=10""
|:|=1-(Z|'2

— & —p=1p?

o
o

Microstrain
[
Microstrain

— & _|:l=1'04
— - _p:10-5
—=-—p=10"

L

=

o
'

1
1] 200 400 600 800 1000 1] 200 400 600 800 1000
Vertical displacement (mm) Vertical displacement (mm)

Figure 11. OOP deformation test Step 5: Strain along the vertical line (a) at 800 mm and (b) at 1000 mm
for different p parameters, no filter, and optical fibre.
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Figure 12. OOP deformation test Step 6: Strain along the vertical line (a) at 800 mm and (b) at 1000 mm
for different p parameters, no filter, and optical fibre.

In view of a practical setting, the initial stress condition of installed membrane cover is unknown
and therefore it is also of particular interest to compare the change in strain, Ae, from different test
loading. Figure 13 shows the A¢ of Step 6 relative to the preceding tests. The Ae profiles are similar
compared to the measured strain recorded when the model is smoother. However, a reduction of Ae
value, especially in the vicinity of the maximum/minimum Ae¢ value, is also observed. In Figure 13,
the average maximum Ae reductions for p values 1073 to 107° are 29.2%, 40.23%, 49.2%, and 74.9%,
respectively, relative to the experimental maximum Ae¢ along the vertical line at 800 mm. In Figure 14,
the average maximum Ae¢ reductions for p values 1073 to 107 are 59.5%, 66.1%, 63.5%, and 61.8%,
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respectively, relative to the experimental maximum Ae¢ along the vertical line at 1000 mm. The findings
indicate that the change in strain profiles and the location of the maximum change in strain can also be
accurately predicted by smoothing the model. Furthermore, the reduction of maximum Ae¢ value is
also observed.
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Figure 13. OOP deformation test: Change in strain of Step 6 relative to the preceding tests with different
p and measured by the optical fibre along the vertical line at 800 mm horizontally.
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Figure 14. OOP deformation test: Change in strain of Step 6 relative to the preceding tests with different
p and measured by the optical fibre along the vertical line at 1000 mm horizontally.

3.2. In-Plane Displacement Test (Wrinkle Formation)

Figure 15 shows the strain in the horizontal direction of the first in-plane displacement test (Step 1)
for different p, and similarly to the previous findings, the quality of the strain profile significantly
improves as the model is smoothed with the loss of detail strain information. Figures 1618 show the
strain distributions along the horizontal line at 180 mm for the three tests with and without the filtering
process and recorded by the optical fibre. There are significant improvements in the strain profile
when p is smaller than 1073 in comparison with the measured strain, and the location of predicted
maximum strain is within 29.9 mm of the location of the measured maximum strain value. The strain
profile gradually improves as p decreases and the maximum strain value gradually decreases for all
tests, similar to the previous investigation. There is an average maximum strain reduction of 46.9%,
55.1%, 60.7%, and 65.6% for p values 103 to 107, respectively, relative to the optical fibre-measured
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experimental strain. It should be noted that the FE analysis of Step 3 raw strain distribution did not
converge due to noise of the actual displacement measurement.

Figure 15. In-plane deformation test Step 1: HDPE membrane strain in the horizontal direction of (a)
raw data and different cubic smoothing spline weighting parameter; (b—g) 1071,1072,1073, 1074, 1079,
and 107, respectively.
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Figure 16. In-plane deformation test Step 1 strain (a) at 180 mm and (b) 320 mm of optical fibre and
different cubic smoothing spline weighting parameter from 107! to 107.
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Figure 17. In-plane deformation test Step 2 strain (a) at 180 mm and (b) 320 mm of optical fibre and
different cubic smoothing spline weighting parameter from 107! to 107.
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Figure 18. In-plane deformation test Step 3 strain (a) at 180 mm and (b) 320 mm of optical fibre and
different cubic smoothing spline weighting parameter from 10~ to 107°.

Figures 16-18 show improvement of strain in the vicinity of 400 mm and 800 mm as the model
smoothed; however, significant changes to strain as p decreases suggest a high level of noise in those
particular locations. It is observed that the strain slope is different compared to the optical fibre
measurement at 400 mm and 800 mm. Furthermore, the development of these abrupt high compressive
strains is earlier seen in Figure 16 in the same vicinities. The reason that it is causing such inaccuracy is
due to the reconstructed DEM model at the steep regions (high slope gradient) along the membrane.

Figures 19 and 20 show the Ae of Step 3 test relative to the preceding tests. In Figure 19,
the average maximum Ae¢ reduction for p values 1073 to 107° are 25.7%, 32.7%, 46.0%, and 58.5%,
respectively, relative to the experimental maximum Ae along the horizontal line at 180 mm. In Figure 20,
the average maximum Ae¢ reduction for p values 1073 to 107° are 38.4%, 60.8%, 64.6%, and 68.6%,
respectively, relative to the experimental maximum Ae¢ along the horizontal line at 320 mm. As expected,
the changes in strain profiles are different, especially near the 400 mm and 800 mm vicinity compared
to the experimental strain recorded by the optical fibre when the model is smoother. Nevertheless,
the development of the strain, as well as the change in strain profiles as a function of p, provided
qualitative guidance of the strain information, and to further progress in strain evaluation, a statistical
approach is considered in the next section.
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Figure 19. In-plane deformation test: Change in strain of Step 3 relative to the preceding strain;
(a) Step 1 and (b) Step 2, at 180 mm of optical fibre and different cubic smoothing spline weighting
parameter from 1073 to 107°.
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Figure 20. In-plane deformation test: Change in strain of Step 3 relative to the preceding strain;
(a) Step 1 and (b) Step 2, at 320 mm of optical fibre and different cubic smoothing spline weighting
parameter from 1072 to 107°.

3.3. Strain Determination in Using VHGP

The strain profile results from OOP deformation and in-plane deformation tests are used as
sample data for VHGP to predict the strain field. Figures 21 and 22 show the measured strain,
VHGP maximum predicted mean strain with 95% of certainty (26 confidence intervals) of the OOP
and in-plane deformation tests, respectively. The measured maximum strains are larger than the
predicted mean strain and are within the 26" confidence interval, specifically in the upper limit half,
of the VHGP model for almost all tests, except for OOP test Step 6 which is approximately +2.15 §*
from VHGP maximum strain prediction.

There are significantly larger variances in the VHGP models of the in-plane deformation tests
which are due to the significant noise (in the vicinity of 400 mm and 800 mm) compared to the OOP
tests. It is shown that the VHGP model provided acceptable estimations and uncertainty measurements
of the maximum strain of OOP and in-plane deformation tests by incorporating the data of raw and
smoothed strain fields.
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Figure 21. OOP deformation test Step 1 to Step 6: Predicted maximum strain with 95% of certainty
along the vertical line (a) at 800 mm and (b) at 1000 mm horizontally compared with optical fibre
maximum strain measurements.
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Figure 22. In-plane deformation Step 1 to Step 3: Predicted maximum strain with 95% of certainty along
the horizontal line (a) at 180 mm and (b) at 320 mm vertically compared with optical fibre maximum
strain measurements.
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4. Discussion

The UAV photogrammetry inspection method is shown to be effective in monitoring the state of
deformation of the floating covers at Melbourne Water WTP [37]. In comparison to non-contact methods
on measuring strain fields, although DIC methods may yield higher accuracy, DIC methods require the
membrane to be coated with random patterns and multiple fixed cameras continuously monitoring to
capture the whole asset—these requirements are not practicable for WTP. Furthermore, DIC methods
are not effective for monitoring wrinkle and fold formations, which makes photogrammetry methods
more suitable for monitoring membrane cover [27]. To further facilitate the development of smart
SHM assessment on this highly valuable asset, the digital displacement information of the covers
can be further processed into strain measurement to allow a more elaborative quantification of its
integrity. Overall, this paper introduces a strain determination method proposed for WTP floating
cover and the UAV photogrammetry deployment and its general application for large structures are
briefly discussed.

The proposed strain determination method is suitable for global inspection in the two-stage
monitoring strategy, as it demonstrates the capability to produce a higher quality strain distribution
profile of the deformed membrane for detecting critical areas. Furthermore, the VHGP offers a
probabilistic prediction approach that supplements the decision support to justify further localised
inspection in concerning areas. The results have shown that the use of cubic smoothing interpolation
technique can reliably denoise the DEM, improving the quality of the strain field of deformed
membranes to locate high strain areas in both OOP and in-plane deformation tests. However,
the smoothing procedure adversely degrades fine detail information and flattens peaks, which is
seen for increasing deformation test steps. As a result, there is a difficulty in capturing the numeric
strain values at high strain concentrated areas. It should be worth noting that the optimisation of the
grid resolution should be carefully considered in both the capability of the photogrammetry, camera,
and image resolution and in accurately capturing critical deformations or details of the specimen or
structure when implementing this approach for strain determination via UAV photogrammetry [21].
In our application, WTP regulations restrict additional markings of the floating cover and only existing
features can be used as targeted fiducial markers, which limits the ability to enhance the resolution
for an accurate reading. Furthermore, due to the disturbance of wildlife, fire hazard, and WTP
regulations, UAV photogrammetry cannot be performed too close to the floating cover for more
detailed measurements. To facilitate the strain evaluation, a probabilistic approach is implemented to
predict the strain values with statistical measurement by using the smoothed and raw model strain
fields as data samples. A VHGP method is demonstrated to provide uncertainty measurements to assist
in evaluating the strain field within the 95% confidence level by using only the available smoothed and
raw models. As VHGP searches a distribution over the possible functions that are consistent with the
data, large variances occur in the vicinity of strain concentrated areas and noise due to its relatively
high changes in strain value as smoothing weighting parameter changes, thereby corresponding to
higher uncertainty variance in those areas.

A factor contributing to inaccurate strain, as discussed earlier, is the reconstruction of DEM
using UAV photogrammetry in the region with a steep slope. As reported in Wong et al. [36],
UAV photogrammetry has difficulties in reconstructing the DEM model with sharp corners and high
slope gradients. The photogrammetry process may consider the steep region as a discontinuity in
the reconstructed model and automatically apply a smoothing function to construct a smooth DEM.
For this laboratory experiment, the aerial images were only taken directly above the region of interest.
More viewing angles can improve the accuracy of close-range photogrammetry analysis.

The lack of in-plane direction information on the model may have contributed to the inaccuracy
of the strain field. However, it was found that by including the experimental full-field displacement as
the applied load led to either, mostly, un-converged solution or highly inaccurate strain results with no
resemblance to the measured strain profile and values. It was revealed that there were inconsistent
feature detections and extractions of points along the grid line. Some data points were extracted within
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the 1.5 mm width of the line rather than consistently from the centre. These are artificially induced
erroneous in-plane deformations, resulting in extremely noisy and unreliable data in the in-plane
direction. Therefore, only the in-plane displacements on the boundaries of the grid were manually
identified, selected, and loaded to provide sufficient constraint for FE analysis. Further improvement
in the object-identification algorithm can accurately identify and extract the markers. Nevertheless,
ongoing future work will investigate improving the quality of DEM, to explore feature identifying
and optimize selection on the fiducial markers on the WTP floating covers, as well as other strain
prediction algorithms.

5. Conclusions

In the development of an effective two-stage monitoring strategy for Melbourne Water’s WTP
floating cover, this paper presented a strain determination technique which incorporates UAV
photogrammetry for rapid monitoring in locating critical areas, whilst providing statistical insight
for further localised evaluation. The effectiveness of UAV photogrammetry is known to capture
larger structures and membrane deformation, such as folds and wrinkles, making it suitable for
the large floating covers in WTP. This study has shown a method which utilises the raw DEM of
deformed membrane covers from UAV photogrammetry to predict the strain field using FE analysis
and a statistical approach. Cubic smoothing interpolation was performed to denoise the DEM, which
improves the DEM quality for FE analysis to produce a higher quality strain field that has similar results
to the associated experimental strain profile recorded by the optical fibres. However, as the smoothing
parameter changes, it is shown that smoothing results in loss of amplitude and detailed information
which is most apparent in the vicinity of the maximum strain locations. A VHGP regression method
was applied, by using the smoothed model strain fields as training data, in order to further assist
in the evaluation of those strain values. It is shown that the predicted strain values are within 95%
certainty and critical areas have high variance due to significant noise and high changes of strain
values as the smoothing parameter changes. The statistical approach provides the likelihood of strain
value estimations and, thereby, vital information for decision-making processes at the operational and
management levels. Our future work will continue investigating the strain determination of large
membrane covers, which includes improving the accuracy and automation to be applied on WTP
floating covers, towards smart structure development. More ongoing on-the-field work on the UAV
photogrammetry method is currently underway.
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