Skip to main content
Log in

Analysis of Failure Pressure of Defective Pipes Repaired with Composite Systems Considering the Plastic Deformation of Pipe

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

Wrapping a composite material around the wall loss defective pipe is a well-known practice in pipeline rehabilitation as per guidelines provided by the design standards ISO/TS 24817 and ASME PCC-2. This work presents an analytical model to evaluate the composite repair thickness for a damaged pipeline with accounting for the plastic deformation and compare it with the results of design codes and numerical models. Hydrostatic tests performed on a repaired pipe using a composite system in different laboratories were used to validate the repair thickness using different criteria. The results show that the proposed analytical model is in good agreement with the numerical models and experimental results. The repair thickness calculated using the design codes (ISO/TS 24817 and ASME PCC-2) is more conservative, which results in repaired pipes failing outside the defect section. However, the proposed model predicts a lower composite thickness to sustain the same design pressure which enables the saving composite material. The proposed model can be refined further by accounting for the composite laminate strain using the Tsai-Hill or Hashin failure theory instead of allowable strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

All relevant data are presented in the manuscript, if needed additional information may be made available upon request

Code Availability

Program code is not used in this study.

References

  1. G.S. Frankel, J. Electrochem. Soc. 145, 2186 (1998)

    Article  Google Scholar 

  2. G.H. Koch, M.P.H. Brongers, N.G. Thompson, Y.P. Virmani, J.H. Payer, Federal Highway Administration Office of Infrastructure Research and Development 260 (2000)

  3. W.K. Goertzen, M.R. Kessler, Compos. B Eng. 38(1), 1 (2007)

    Article  Google Scholar 

  4. K.B. Armstrong, W. Cole, G. Bevan, Care and Repair of Advanced Composites, (SAE International, London, 2005)

  5. M. Shamsuddoha, M.M. Islam, T. Aravinthan, A. Manalo, K.-T. Lau, Compos. Struct. 100, 40 (2013)

    Article  Google Scholar 

  6. N. Saeed, H. Ronagh, A. Virk, Compos. B Eng. 58, 605 (2014)

    Article  Google Scholar 

  7. K.S. Lim, S.N.A. Azraai, N. Yahaya, L. Zardasti, N.M. Noor, J. Technol. 79, 9 (2017)

    Google Scholar 

  8. S. Budhe, M.D. Banea, N.R.F. Rohem, E.M. Sampaio, S. de Barros, Compos. Struct. 176, 1013 (2017)

    Article  Google Scholar 

  9. ISO 24817: Petroleum, Petrochemical and Natural Gas Industries-Composite Repairs for Pipework-Qualification and Design, Installation, Testing and Inspection (International Standard Organization, 2006)

  10. ASME PCC-2, Repair of Pressure Equipment and Piping (The American Society of Mechanical Engineers, New York, 2011)

    Google Scholar 

  11. N.R.F. Rohem, L.J. Pacheco, S. Budhe, M.D. Banea, E.M. Sampaio, S. de Barros, Compos. Struct. 152, 737 (2016)

    Article  Google Scholar 

  12. T.S. Mally, A.L. Johnson, M. Chann, R.H. Walker, M.W. Seller, Compos. Struct. 100, 542 (2013)

    Article  Google Scholar 

  13. L. Mazurkiewicz, M. Tomaszewski, J. Malachowski, K. Sybilski, M. Chebakov, M. Witek, P. Yukhymets, R. Dmitrienko, Int. J. Press. Ves. Pip. 149, 108 (2017)

    Article  Google Scholar 

  14. E. Mahdi, E. Eltai, Compos. Struct. 202, 802 (2018)

    Article  Google Scholar 

  15. S. Budhe, M.D. Banea, S. de Barros, J. Mar. Sci. Technol. (2019). https://doi.org/10.1007/s00773-019-00696-3

    Article  Google Scholar 

  16. S. Budhe, M.D. Banea, S. de Barros, N.R.F. Rohem, Materialwiss. Werkstofftech. 49(7), 902 (2018)

    Article  Google Scholar 

  17. L. Mazurkiewicz, J. Małachowski, M. Tomaszewski, P. Baranowski, P. Yukhymets, Compos. Struct. 183, 199 (2018)

    Article  Google Scholar 

  18. K.S. Lim, S.N.A. Azraai, N. Yahaya, MdN Noor, L. Zardasti, J.-H. Kim, Thin Wall Struct. 139, 321 (2019)

    Article  Google Scholar 

  19. S. Budhe, M.D. Banea, S. de Barros, J. Fail. Anal. Prev. 19, 1832 (2019)

    Article  Google Scholar 

  20. J.M. Duell, J.M. Wilson, M.R. Kessler, Int. J. Press. Ves. Pip. 85, 782 (2008)

    Article  Google Scholar 

  21. C. Alexander, Development of Composite Repair System for Reinforcing Offshore Risers. Ph.D. Thesis, Texas A&M University (2007)

  22. H.S. da Costa Mattos, J.M.L. Reis, L.M. Paim, M.L. da Silva, F.C. Amorim, V.A. Perrut, Compos. Struct. 114, 117 (2014)

    Article  Google Scholar 

  23. H.S. da Costa Mattos, J.M.L. Reis, L.M. Paim, M.L. da Silva, R.L. Junior, V.A. Perrut, Eng. Fail. Anal. 59, 223 (2016)

    Article  Google Scholar 

  24. A. Kaptan, Y. Kisioglu, Int. J. Press. Ves. Pip. 84(7), 451 (2007)

    Article  Google Scholar 

  25. L. Andreas, K. Gerhard, Z. Steffen, in Seventeenth International Offshore and Polar Engineering Conference, Lisbon (2007)

  26. R.M. Jones, Mechanics of Composite Materials, 2nd edn. (Taylor and Francis, London, 1999)

    Google Scholar 

  27. N. Saeed, Composite Overwrap Repair System for Pipelines-Onshore and Offshore Application. Ph.D Thesis, The University of Queensland, Brisbane (2015)

  28. J.L.F. Freire, J.R.D. Vieira, L.C. Diniz, L.C. Meniconi, Exp. Tech. 31(5), 59 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of the brazilian research agencies CNPQ, CAPES and FAPERJ.

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

SB (First and corresponding author) was responsible for analytical data modelling and article writing part. MDB carried out the analysis and made relevant changes in the manuscript. SdB carried out data analysis and comparison of experimental results with analytical and numerical model.

Corresponding author

Correspondence to S. Budhe.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budhe, S., Banea, M.D. & de Barros, S. Analysis of Failure Pressure of Defective Pipes Repaired with Composite Systems Considering the Plastic Deformation of Pipe. J. Inst. Eng. India Ser. C 101, 929–936 (2020). https://doi.org/10.1007/s40032-020-00612-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-020-00612-4

Keywords

Navigation